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ABSTRACT

The variation of the thermal component of the yield stress, T*,

with temperature for the Groups VA and VIA body centered cubic

transition metals has been determined from data reported in the

literature. It was found that the temperature dependence of T'* is

relatively independent of structure for a purity of < 99. 98% by

weight, butmay decrease for higher purity material and for single

crystals as compared to polycrystals, in agreement with what had

previously been found for iron. By plotting T* versus the param-eter (T - To)/Tm, it was possible to correlate the data for all

the b. c. c. transition metals. T is the test temperature, To the

temperature where T* is first zero, and Tm the melting tempera-

ture. The present results support thermally-activated overcoming

of the Peierls-Nabarro stress as the mechanism responsible for

the strong temperature dependence of the yield stress in the

b.c.c. metals.
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INTRODUCTION

A correlation has been established for the thermal component of the yield

stress of the body centered cubic transition metals in Groups VA and VIA of

the Periodic Table. The study which resulted in this correlation was an

outgrowth of a previous analysis of data published by various investigators

on the effects of temperature on yielding and flow of body centered cubic

metals (b.c.c.), Ref. 1.

In the original study, it was pointed out that a number of investigators had

attributed the temperature dependence (or thermal component) of the lower

yield stress (rLy) of b.c. c. metals to the tearing of dislocations from their

atmosphere of interstitial atoms (Ref. . and 3). However, strong temperature

dependence had also been observed for the proportional limit (0-p) and the

flow stress (y( ), measured at a strain beyond the Luders strain, as shown

in Fig. 1. The lattice friction stress (a.0) in iron was also known to depend

strongly on temperature (Ref. 4). In addition, the temperature dependence

of the reversible flow stress (arfl) for strained electrolytic iron had been

found to be independent of strain (Ref. 5). It was concluded from these facts

that the proportional limit, lower yield stress, and subsequent plastic flow

in b. c. c. metals are controlled by the same mechanism.

Additional data on iron revealed that the purity and crystalline form (i.e.,

single crystal or polycrystal) also affect the temperature dependence of the

yield stress. By plotting the difference between the yield stress at test

temperature, T, and that at 3000 K versus the test temperature, the tempera-

ture independent component of the stress was removed. The data points,

plotted in this manner, fell into two scatter bands. One of the bands (termed

Band A) had a strong temperature dependence and the other, Band B, had a

somewhat weaker temperature dependence (though still greater than that

generally observed for face centered cubic and close packed hexagonal metals).
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Band A represents all data points of polycrystalline materials of low purity

(i.e., where C + N> 0. 01% by wt), and Band B represents the data points of

high-purity polycrystals (where C + N < 0. 01% by wt) and high and low purity

single crystals. The results are shown in Fig. 2.

The effect of interstitial content and grain boundaries on the temperature

dependence of the yield stress was further examined by plotting the difference

between the yield stress of iron at 78 K and 300 K versus the impurity con-

tent of carbon plus nitrogen. The results showed that the temperature

dependence of the yield stress for polycrystalline iron is greatly dependent

on the interstitial content up to -. 0. 015% by weight, whereas, single crystals

exhibited only slight dependence. Above 0. 015% by weight, no additional

effect was observed. Thus, it was concluded that the strong temperature

dependence of the lower yield stress is associated with the combined effect

of interstitial impurities and grain boundaries. A lower temperature

dependence results if either is missing.

A graphical comparison was prepared on the effect of temperature on: 1) the 41)
lower yield stress (rLy) from Fig. 2; 2) the lattice friction stress (a00) in

material with a C + N content of 0. 16%0 from Ref. 4; and 3) the reversible

flow stress after a strain of 5% (af-) for electrolytic iron with a C + N content

of 0. 017% from Ref. 5. It is seen in the comparison (Fig. 3) that the data

points for o0 and arfl fell (with one exception) into Band A. Since the values

for 0-00 were obtained by extrapolating a0 to (C + N) in solution = 0%, it

appears that the total impurity content governs the temperature dependence

of a 00' rather than the amount of impurity in solution. It will be noted in
0Fig. 3 that the value for (00 at 77 K fell outside Band A. It was suggested

that the occurrence may have been the result of twinning, which has been

observed by a number of investigators at low temperatures (Ref. 6, 7, and 8).

The amount in solution was only 0. 005 to 0. 025%.
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O In conclusion, the initial study showed that:

1) The proportional limit (rp), the lattice friction stress (WOO),

and the reversible flow stress (rfj) show a temperature

dependence similar to that for the lower yield stress (OLY).

2) The temperature dependence of the flow parameters (aLY'

Cfl and a-00) in polycrystalline iron is determined by the

total interstitial content, rather than by the amount of

impurity in solution.

3) In iron, the presence of both grain boundaries and interstitial

impurities is required to give the very strong temperature

dependence of the stress normally attributed to b. c. c. metals.

The results of the initial analysis prompted further research to establish a

correlation between reported values for the thermal component, or tempera-

ture dependence, of the yield stress of all body centered cubic transition

metals in Groups VA and VIA of the Periodic Table.
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CORRELATION OF THE THERMAL COMPONENT

Figure 4 summarizes the results of the original investigation of iront which

formed the basis for the subsequent work in establishing a correlation

between the thermal components of the yield stress. The temperature

independent component of the yield stress has been removed from considera-

tion in Fig. 4 by plotting the difference between the yield stress at temperature

T and that at 300°0 K versus the test temperature. The stresses plotted in

Fig. 4 through 1Z are shear stresses (i. e., one-half of the tensile stress

for polycrystalline specimens and the critical resolved shear stress for single

crystals).

The thermal component of the yield stress for the b. c. c. transition metals

of Groups VA and VIA behaves in a manner similar to that observed for iron,

as shown in Fig. 5 through 10. (Supplemental information pertaining to the

figures is presented in Table 1. ) The similarity in behavior between the

(. b.c. c. transition metals and iron suggests that the temperature dependence

of the yield stress of all of the b. c. c. transition metals can be correlated

through a parameter such as the melting temperature. Previous attempts

at such a correlation have not been completely successful; in fact, they

suggest a difference in behavior between the Group VA and Group VIA metals

(Ref. Z4 and Z5). However, in Fig. 11, it is seen that a reasonable corre-

lation exists between all of the b. c. c. transition metals of low purity

(<99. 98% by wt) when the thermal component of the yield stress (T* = r - T

is plotted versus the parameter (T - T )/T , where:

T = the applied shear stress taken as one-half of the

tensile stress,

tData for zone-refined iron at 4. Z°K from Ref. 16 are not included in the
figure due to the occurrence of twinning at that temperature. In view of this
and other considerations (Ref. 22 and Z3), the yield stress for single crys-
tals and high-purity polycrystals (>99. 995% by wt) of iron is considered to
follow the dashed curve of Fig. 4, rather than as indicated in the initial study.
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T the long-range internal stress which is depen-

dent on the structure and proportional to the

shear modulus (p),

T = the test temperature,

T = the temperature at which r first becomes equal

to TrI

Tm = the melting temperature.

The data points of Fig. 11 were taken from the solid curves of Fig. 4 through

10. T was derived as follows. When T* is zero, then0

T?=' =a• (1)

where a is a constant. Differentiating Eq. (1) and substituting for a, one

obtains

dT dL (2)

In the temperature range where the plots of T* versus temperature are

relatively flat, one finds that

-d4 o03= 1. 5 to 3. 5 X 10 per K (3)

for the various b. c. c. metals. t Further, since the yield stress in this
2

range is approximately 10 to 20 kg/mm , one obtains from Eq. (2)

ci? P 5 X 10 kg/mm / K , (4)

IThe variation of modulus with temperature was taken from Ref. Z6 and 27.
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0
when -r* 0. T0 is then obtained by extrapolating plots of

log()

versus temperature to a value of 5 X 10"3 kg/mm2/°K. (Refer to Fig. 12.)

The value for

dT

was obtained by graphical differentiation of the curves in Fig. 4 through 10

The values of T (to the nearest 50°K) derived in this manner are given in
0

Table 2. It is estimated that the values are accurate to within 10%.

In Fig. 13, it is seen that To is approximately proportional to the melting

00S temperature (i. e., To 0 Os . 2Z T mn). This agrees with previous observations

(Ref. 25 and 28) that the yield stress of the b. c. c. metals shows a relatively

temperature-independent region above 0. 20 to 0. 25 Tm

The fact that the thermal component of the yield stress correlates in this

manner suggests that the same dislocation mechanism is rate-controlling

in the b. c. c. metals. Furthermore, since the thermal component is

independent of structure, one can conclude that this mechanism is

overcoming the Peierls-Nabarro stress, i.e., overcoming the inherent

resistance of the b. c. c. lattice.

The decrease in stress noted for vanadium, columbium, and tantalum,

following the region of relatively constant stress, probably represents the

migration of interstitials along with the dislocations.
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Table 2. T and T for B. C. C. Transition Metals
0 m

dT3
T temperature where is 5 X 10 kg/mm /°K

0 Y
and T = melting temperature

Metal Tm, 0 K Top OK

Vanadium 2173 450

Niobium 2741 500

Tantalum 3269 600

Chromium 2148 500

Molybdenum 2883 650 4 )
Tungsten 3683 950

Iron 1810 350

-2)
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